Publicaciones
[1] D. G. Calatayud, T. Jardiel, M. Peiteado, Francesc Illas, Elio Giamello, F. J. Palomares, D. Fernández-Hevia, and Amador C. Caballero: “Synthesis and Characterization of Blue Faceted Anatase Nanoparticles Through Extensive Fluorine Lattice Doping”. Accepted for publication in The Journal of Physical Chemistry C.
[2] Oriol Lamiel Garcia, Daniel Fernandez Hevia, Amador C. Caballero, and Francesc Illas: “Adsorption properties of trifluoroacetic acid on anatase (101) and (001) surfaces: A density functional theory study” Phys. Chem. Chem. Phys., 2015, Accepted Manuscript. DOI: 10.1039/C5CP03780H
[3] M. R. Espino-Estévez, C. Fernández-Rodríguez, O. M. González-Díaz, J. A. Navío, D. Fernández-Hevia, and J. M. Doña-Rodríguez “Enhancement of stability and photoactivity of TiO2 coatings on annular glass reactors to remove emerging pollutants from waters”, Chemical Engineering Journal (2015), pp. 488-497.
[4] D. G Calatayud, T. Jardiel, M. Peiteado, A. C. Caballero and D. Fernández Hevia: “Microwave-induced fast crystallization of amorphous hierarchical anatase microspheres”, Nanoscale Research Letters 9, 273 (2014)
[5] Yanaris Ortega, Daniel Fernández Hevia, J. Oviedo, M.A. San-Miguel: “A DFT study of the stoichiometric and reduced anatase (0 0 1) surfaces”, Applied Surface Science, Volume 294, 1 March 2014, Pages 42–48
[6] J. Urresti, S. Hidalgo, D. Flores, and Daniel Fernández Hevia: “3.3 kV PT-IGBT with voltage-sensor monolithically integrated”. IET Circuits Devices Syst., 2014, Vol. 8, Iss. 3, pp. 182–187
[7] Daniel Fernández Hevia and José Millán: “Trimming Grid Losses with SiC”, Compound Semiconductor November/December 2014, pp. 28-33 (available on-line at http://www.compoundsemiconductor.net/article/95977-trimming-grid-losses-with-sic.html).
[8] J.A. Ortega Méndez, C. R. López, E. Pulido Melián, O. González Díaz, J.M. Doña, and D. Fernández Heviaa,c, M. Macías: “Production of hydrogen by water photo-splitting over commercial and synthesised Au/TiO2 catalysts” J. Applied Catalysis B: Environmental 147 (2014) 439– 452
[9] D. G. Calatayud, T. Jardiel, M. Peiteado, C. Fernández Rodríguez, M. Rocio Espino, Jose M. Doña, F. J. Palomares, F. Rubio, Daniel Fernández Hevia and Amador C. Caballero: “Highly photoactive anatase nanoparticles obtained using trifluoroacetic acid as an electron scavenger and morphological control agent”. J. Mater. Chem. A, 2013, 1, 14358–14367.
[10] E. Pulido Melián, C. R. López, A. Ortega Méndez, O. González, M. Nereida Suárez, J.M. Doña, J.A. Navío, and D. Fernández Hevia: “Hydrogen production using Pt-loaded TiO2 photocatalysts”. Int. J. Hydrogen Energy 38, 11737-11748 (2013).
[11] Y. Ortega, O. Lamiel-Garcia, D. Fernandez Hevia, S. Tosoni, J. Oviedo, M. A. San-Miguel, and Francesc Illas: ”Theoretical study of the F doped anatase surfaces”. Surface Science 618 (2013) 154–158.
[12] D. Fernández Hevia, C. Stampfl, F. Viñes, and F. Illas: “Microscopic origin of n-type behavior in Si-doped AlN” Phys. Rev. B 88, 085202 (2013).
[13] Jun Hee Lee, Daniel Fernandez Hevia, and Annabella Selloni: “Incorporation of nonmetal impurities at the anatase TiO2(001)-(1×4) surface”. Phys. Rev. Lett. 110, 016101 (2013).
[14] T. Jardiel, D. G. Calatayud, M. Rodríguez, D. Fernández Hevia, and A. C. Caballero: “Synthesis of metastable Bi6Ti5WO22 phase by the mechanochemical method”. Materials Letters 94, 58-60 (2013).
[15] T. Jardiel, D. G. Calatayud, M. Rodríguez, M. Peiteado, D. Fernández Hevia, and A. C. Caballero: “Facile synthesis of hierarchical anatase microspheres”. J. Alloys & Compounds 551, 481-484 (2013).
[16] D. G. Calatayud, T. Jardiel, M. Rodriguez, M. Peiteado, D. Fernandez Hevia, and A. C. Caballero: “Soft solution fluorine-free synthesis of anatase nanoparticles with tailored morphology” Ceramics International 39, 1195-1202 (2013).
[17] E. Pulido, O. González, A. Ortega, C. R. López, M. N. Suárez, J.M. Doña, J.A. Navío, D. Fernández Hevia, and J. Pérez Peña: “Efficient and affordable hydrogen production by water photo-splitting using TiO2-based photocatalysts”. Int. J. Hydrogen Energy 38, 2144-2155 (2013).
[18] S. Tosoni, O. Lamel-García, Daniel Fernandez Hevia, and F. Illas: “Theoretical Study of Atomic Fluorine Diffusion through Bulk TiO2 Polymorphs”, J. Phys. Chem. C 116, 12738 (2012)
[19] S. Tosoni, Daniel Fernandez Hevia, O. Gonzalez Díaz, and F. Illas: “Origin of Optical Excitations in Fluorine-Doped Titania from Response Function Theory: Relevance to Photocatalysis”, J. Phys. Chem. Lett. 3, 2269 (2012)
[20] S. Tosoni, O. Lamel-García, Daniel Fernandez Hevia, J. M. Doña, and F. Illas: “Electronic Structure of F-Doped Bulk Rutile, Anatase, and Brookite Polymorphs of TiO2”, J. Phys. Chem. C 116, 12738 (2012)
[21] Sergio Tosoni, Daniel Fernández Hevia, Jesús Pérez Peña, and Francesc Illas, “Prediction of optical properties of F centers in oxides from quasiparticle excitations.” Phys. Rev.B 85, 115114 (2012).
[22] M. Peiteado, Y. Reyes, A. M. Cruz, D. G. Calatayud, Daniel Fernandez Hevia, and A. C. Caballero: “Microstructure Engineering to Drastically Reduce the Leakage Currents of High Voltage ZnO Varistor Ceramics” J. Am. Ceram. Soc. 95, 3043-3049 (2012).
[23] D. G. Calatayud, M. Rodriguez, B. Gallego, D. Fernandez Hevia, and T. Jardiel: “Preparation of Photocatalytic Materials Based on Bi4Ti3O12 Doped with Transition Metals”. Bol. Soc. Esp. Ceram. Vidrio 51, 55-60 (2012).
[24] A. M. Cruz, Y. Reyes, B. Gallego, D. Fernandez Hevia, and M.Peiteado: “Control of microstructure in TiO2-doped ceramic varistors based in the ZnO-Bi2O3-Sb2O3 system”. Bol. Soc. Esp. Ceram. Vidrio 51, 61-66 (2012).
[25] X.Y. Cui, D. Fernández Hevia, B. Delley, A. J. Freeman, and C. Stampfl, “Embedded Clustering in Cr doped AlN: Evidence for General Behavior in Dilute Magnetic III-Nitride Semiconductors” J. Appl. Phys. 101, 103917 (2007).
[26] P. Leret, J. F. Fernández, A. C. Caballero, J. de Frutos, and D. Fernández Hevia “Nonlinear I-V electrical behaviour of doped CaCu3Ti4O12 ceramics,” J. Eur. Ceram. Soc. 27, 3901-3905 (2007).
[27] D. Fernández Hevia, J. de Frutos, A. C. Caballero, and J. F. Fernández, “Dominance of deep over shallow donors and the non-Debye response of ZnO-based varistors,” J. Eur. Ceram. Soc. 25, 3005-3009 (2005).
[28] D. Fernández Hevia, M. Peiteado, J. de Frutos, A. C. Caballero, and J. F. Fernández, “Wide range dielectric spectroscopy of ZnO-based varistors as a function of sintering time,” J. Eur. Ceram. Soc. 24, 1205-1208 (2004).
[29] D. Fernández Hevia, J. de Frutos, A. C. Caballero, and J. F. Fernández, “Broadband Admittance Spectroscopy Applied to the Microstructural Control of Electrical Properties of Electrical Properties in Ceramic Varistors,” Bol. Soc. Esp. Ceram. V. 43, 674-678 (2004).
[30] A. C. Caballero, D. Fernández Hevia, J. F. Fernández, M. Peiteado, and J. de Frutos, “Bulk-grain resistivity of ZnO-based varistors,” J. Electroceramics 13, 759-763 (2004).
[31] M. A. Ponce, D. Fernández Hevia, C. M. Aldao, J. de Frutos, and M. S. Castro, “Análisis mediante impedancia compleja de sensores de SnO2 con la adición de Pd,” Rev. Matéria 9(2), 151-157 (2004)
[32] D. Fernández Hevia, J. de Frutos, A. C. Caballero, and J. F. Fernández, “Dominance of deep over shallow donors in ZnO-based varistors,” Appl. Phys. Lett. 86 (13), 2692-2694 (2003).
[33] D. Fernández Hevia, J. de Frutos, A. C. Caballero, and J. F. Fernández, “Bulk-grain resistivity and positive temperature coefficient of ZnO-based varistors,” Appl. Phys. Lett. 82 (2), 212-214 (2003).